OpenVPTrends and Updates with CMOSS, SOSA™, and HOST Update

Greg Rocco, MIT Lincoln Laboratory 23 January 2024

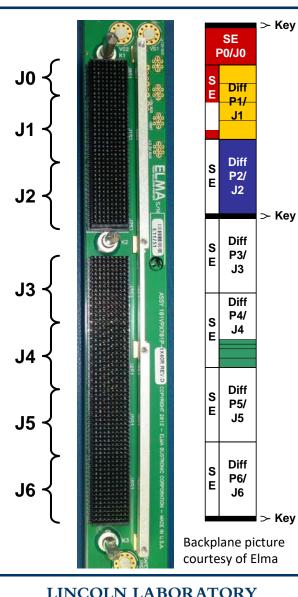
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8702-15-D-0001. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Abstract and Bio

Abstract

The hardware standards ANSI/VITA 65.0-2023 (OpenVPX System Standard) and ANSI/VITA 65.1-2023 (OpenVPX System Standard -- Profile Tables) are widely used for deployed military systems. The OpenVPX standard uses Plug-In Module mechanical, connectors, thermal, communications protocols, utility, and power definitions, provided by specific VITA standards to define a series of Slot, Backplane, Module, and Standard Development Chassis Profiles.

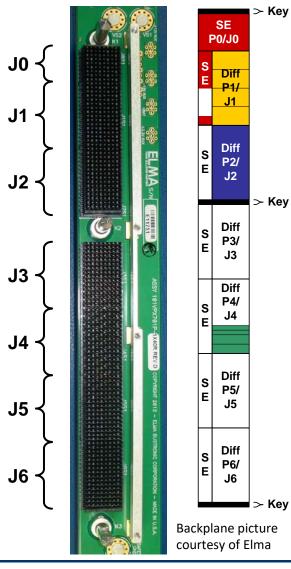

This session will give a high-level description of OpenVPX and go over some of the trends as the standards have evolved.

There is also an update on the CMOSS (C4ISR / Electronic Warfare (EW) Modular Open Suite of Standards), SOSA™ (Sensor Open Systems Architecture), and HOST (Hardware Open Systems Technology) standards.

Bio

Greg Rocco is a member of Technical Staff at MIT Lincoln Laboratory.

He is the editor of: VITA 65.0 (OpenVPX System Standard) and VITA 65.1 (OpenVPX System Standard -- Profile Tables). He was editor of VITA 46.0 (VPX Baseline Standard) up through the recent release of ANSI/VITA 46.0-2023. He is a key contributor to other VITA standards, SOSA, and HOST.


Outline

• CMOSS, SOSA™, and HOST Update by Jason Dirner of U.S. Army C5ISR Center

OpenVPX and associated standards

- Slot, Backplane and Module Profiles
- VITA standards defining mechanical interface of optical/coax
- Relationship of OpenVPX with other standardization efforts
- OpenVPX plans and trends
 - Connecter Modules in ANSI/VITA 65.1-2017, 2019, 2021, and 2023
 - Slot and Backplane Profiles added with 65.0-2019 and 2021 (none added with 2023)
 - Protocol sections added with ANSI/VITA 65.0-2019, 2021, and 2023
- Summary

Some of these slides were taken from the OpenVPX Tutorial. The full Tutorial as well as some others is available at: http://www.vita.com/Tutorials

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND C5ISR CENTER

CMOSS, SOSA™, and HOST Update

12 DECEMBER 2023

JASON DIRNER

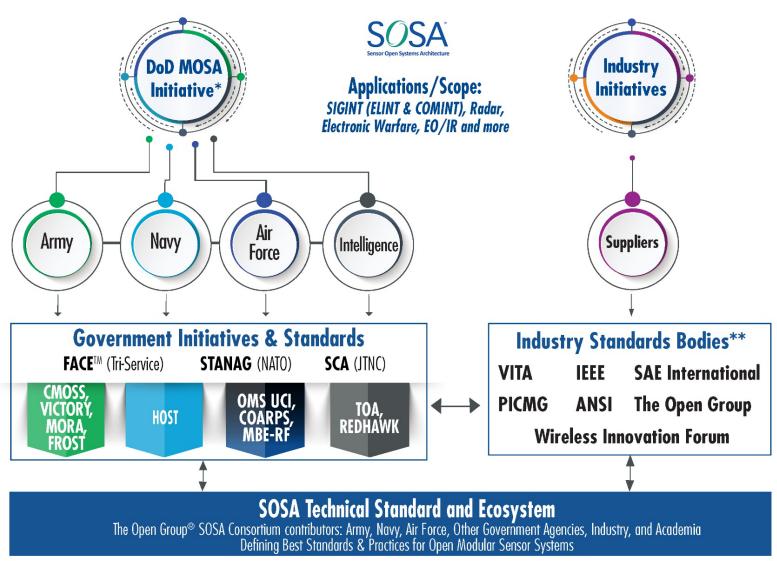
WHY MOSA?

ARMY CMOSS (from CMOSS Overview)

- Reduce size, weight, and power of C5ISR systems
- Share radio resources, processing, and data services
- Increase flexibility and adaptability
- Enable rapid insertion of new technology/capability
- Reduce lifecycle cost through increased competition
- Smaller logistics tails with common sparing

NAVY HOST (from HOST website)

- Provide the hardware framework for developing open embedded systems for U.S. military defense systems
- Increase Interoperability and Interchangeability
- Incorporate Innovation
- Decrease Upgrade Time and Lifecycle Cost
- Improve Competition
- Promote Module Reuse


AIR FORCE SOSATM (from SOSA Executive Overview)

- Develop a unified technical Open Systems Architecture standard for RADAR, EO/IR, SIGINT, EW, and Communications – and the supporting business models
- Improve sub-system, system, and platform affordability, re-configurability, upgradability, and hardware/software/firmware re-use – and to shorten cycle times to counter emerging threats
- "... an integrated business and technical strategy to achieve competitive and affordable acquisition and sustainment over the system life cycle"

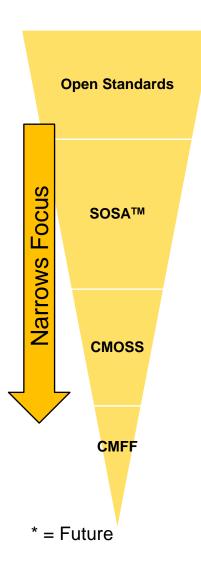
We all have similar goals so why shouldn't we work together on a common standard? – WE ARE

SOSATM - THE STANDARDS "MELTING POT"

The SOSA Consortium is adopting and aligning Government and Industry standards to create a common DoD-wide Open Systems Architecture standard

- Enables reuse across Services, Agencies, and Programs
- Maximizes Government investments
- Capitalizes on collective expertise of over 160 member organizations

Latest additions to the SOSA Consortium include:


- VICTORY and MORA Standards
- DEWS Reference Architecture
- New subcommittee responsible for SOSA sensors deployed in space

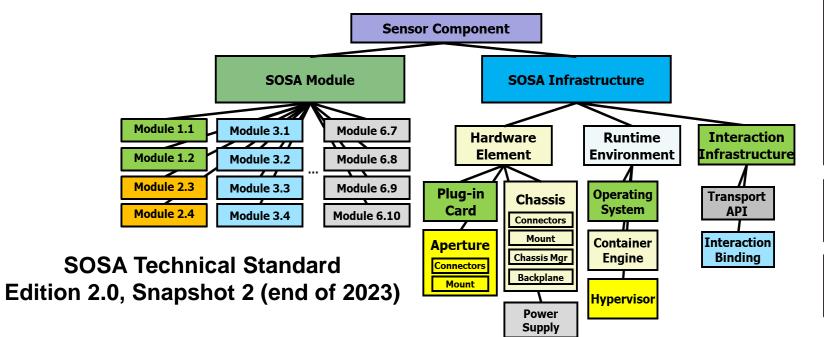
^{*}In support of the US DoD MOSA Mandate memo.

^{**} Representative group. Not all associated standards are listed.

LAYERED STANDARDS

Card Sizes	Slot Profile Options	Cooling	Software Run-Time Environments	System Management	C5ISR Functional Interfaces	Electrical Connector Standards	Mechanical Interface Standards	Environmental Standards
- Same as SOSA - VITA 46 - VITA 90	- 91 Profiles - VITA 65 - VITA 66.x - VITA 67.x	- SOSA+ - VITA 48.x	- FACE OSS - OCI Container - OVF VM	- VITA 46.11	- N/A	- SAE AS6129A	- SAE AS6169A - NATO	- Subset of MIL-STD-810 in VITA 47.1-3
- 3U VPX - 3U sVPX - 6U VPX - VNX+	- 33 Payload - 12 Switch - 4 PNT - 2 PS - AMPS	- 1.0" CC - 1.5" AFT - 1.0" LFT	- FACE OSS - OCI Container - OVF VM - SOSA Config Files	- VITA 46.11 Tier 3 IPMC and ChMC - SOSA In-Band System Mgmt	- SOSA EW, COMMS, SIGINT, Radar, EO/IR - VICTORY Position, Orientation, DOT - MORA	- SAE AS6129A - SOSA connectors - 40 identified	- SAE AS6169A - NATO - Leverages mounting of SAVE but not explicitly	- VITA + some ATPD-2404
- 3U VPX - 6U VPX	- 6 Payload - 4 Switch - 1 PNT - 2 PS - Reduced AMPS	- 1.0" CC - 1.5" AFT	- SCA - MMC* - FACE - Photon - Redhawk - SALVAGE - X-MIDAS	- VICTORY - MORA - VITA 46.11 Tier 3 IPMC and ChMC* - SOSA In-Band System Mgmt*	- VICTORY - MORA	- Same as SOSA	- Same as SOSA	- Same as SOSA*
- 3U VPX	- 2 Payload - 1 Switch - 1 PNT - 1 PS - Reduced AMPS	- 1.0" CC	- SCA - FACE - MMC	- VICTORY - MORA - VITA 46.11 Tier 3 IPMC and ChMC - SOSA In-Band System Mgmt	- VICTORY - MORA	- Subset of SOSA and SAVE TBD*	- SAVE	- SOSA + ATPD-2404 and AVN AQP

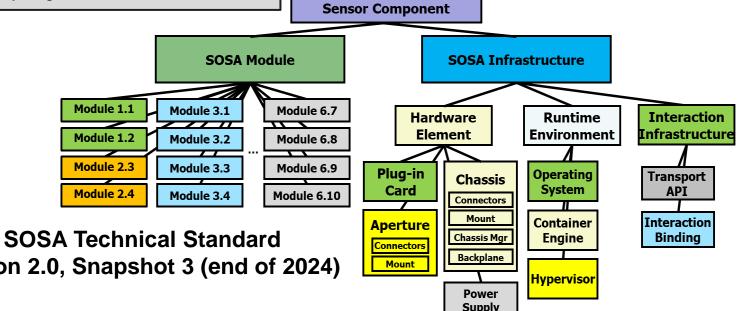
APPROVED FOR PUBLIC RELEASE


WHAT'S NEXT FOR SOSATM?

- EO/IR wide area search/surveillance
- Nav Data Service adoption of VICTORY
- Security Services definition
- Data model updates for EA, SIGINT, SAR, and EO/IR
- MORA V2.5 and VICTORY V1.10

- Additional Chassis Connectors
 - High-Speed Ethernet + Discrete Signals
 - High-Speed Ethernet
 - High-Density Fiber
 - Auxiliary
- Additional Mechanical Interfaces
 - Non-Turreted Sensor
 - Non-Turreted Antenna

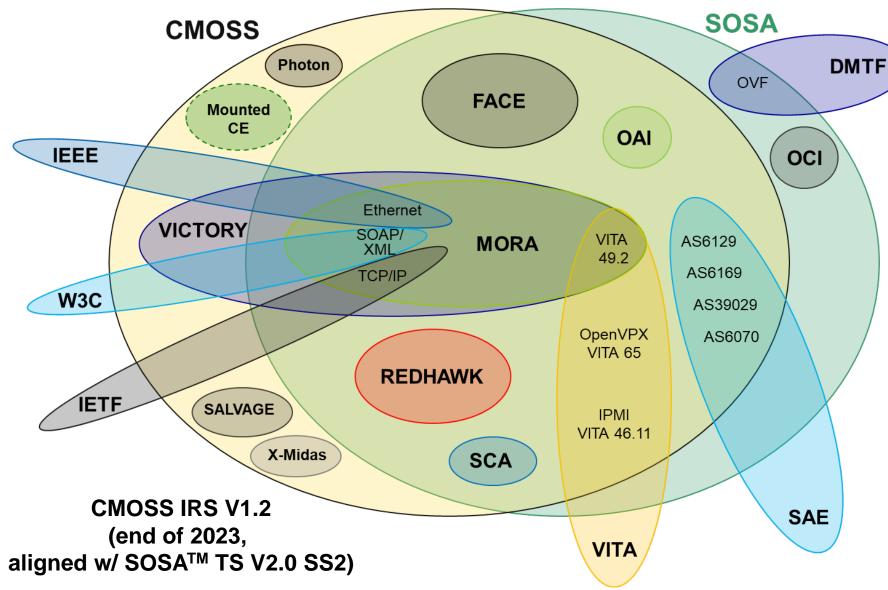
- Tier 3 Intelligence Platform Management Interface (IPMI)
- Updated and Additional Plug-In Card Profiles (PICP)
 - Payload with Video
 - Timing with Signals of Opportunity (SOOP)
 - Security
 - High Density Switch
 - Enhanced environmental specifications
- Small Form Factor Additions
 - Alignment with SpaceVNX
 - Single Board Computer Slot Profile
 - Alternate Module Profile Scheme (AMPS)
- Run-Time Environment (RTE) System Management
- SOSA Data Messages (SDMs) definition


23 January 2024 APPROVED FOR PUBLIC RELEASE

WHAT'S NEXT FOR SOSATM?

- COMMS sensor thread
 - Encryptor/Decryptor definition
 - **Digital Audio**
- Extension of EO/IR sensor thread
- Nav Data Service
 - Updates for airborne community
 - Merger of Nav Data Service and Time & Frequency Service
- Tracker updates
- Security alignment with other standards

- Secure Startup updates for Zero Trust
- System Management
 - Discovery
 - Updates based on community feedback
- Data Model updates
 - EA, SIGINT, SAR, EO/IR, and COMMS sensor threads
 - System Management, Authentication, and Authorization


- Hardware Management Card (HMC) to contain chassis management functions
- Updated Plug-In Card Profiles (PICP)
 - Nuclear Event Detection (NED)
 - Security
 - Front-panel discrete signals
- Small Form Factor additions
 - Power Supply slots profiles
 - Video
- Signals of Opportunity (SOOP) chassis connector
- Run-Time Environments
 - Enhanced guidance for container portability
 - Initial FPGA Run-Time Environment
- Virtual Discretes
- Interaction Bindings nomenclature
- Document cleanup (SvcV-4 and Interaction tables, Security requirements, Chassis connector consolidation)

Edition 2.0, Snapshot 3 (end of 2024) Supply 23 January 2024 APPROVED FOR PUBLIC RELEASE

WHAT'S NEXT FOR CMOSS?

- Increased alignment with SOSA by adopting:
 - SOSA System Management
 - SOSA Connectors and Mounts
- MORA updates include:
 - Update to MORA V2.5
 - Clarifications regarding resource and client requirements
- VICTORY updates include:
 - Update to VICTORY V1.10 (latest version of TLS, IPv6, and 802.1Q)
 - Streaming Audio for digital voice
- OpenVPX updates include:
 - Updated payload pinout indicating RX/TX
 - Updated PNT pinout including SOOP
 - Video coax/fiber connector
 - EP configurable between PCle and Ethernet
 - SOSA Environmental Requirements

WHAT'S NEXT FOR HOST?

- HOST 5.0/5.1 is released
- HOST 5.x model (CAMEO) based (document can be printed if desired)
 - -Tier 1 and Tier 2 available (Distribution A (Public Release))
 - -Tier 3 (Component Specific) Guide available
- HOST and SOSA differences paper completed and available
- Developing Verification Authority (Requirements Verification Metrics, Processes, Lab)
- Common Hardware Integration Layer (CHIL) Standard in development

ADDITIONAL INFORMATION

SOSATM

- SOSA Consortium (https://www.opengroup.org/sosa)
- SOSA Technical Standard Edition 2.0, Snapshot 1
- SOSA Reference Implementation Guide
- SOSA Business Guide
- SOSA Certification Program Certification Guide Version 1.0
- SOSA Conformance Certification Program Conformance Certification Policy

CMOSS

- FY22-C5ISR-CMOSS on SAM.gov (https://sam.gov/opp/1cc5def015a042c881e5ff7dcb35a87f/view)
- Joint Communications Marketplace (https://jtnc.sites.crmforce.mil/)
- CMOSS Interoperability Requirements Specification (IRS) V1.1
- VICTORY Standard Specifications V1.10
- MORA Specification V2.5
- MORA Training Material

HOST

- HOST (https://host-oa.com/)
- Host Standard Tier 1
- HOST Tier 2 OpenVPX Core Technology Standard
- HOST Standard Tier 3 Specification Guide
- HOST Tutorial

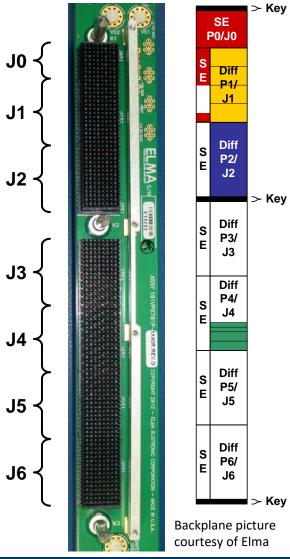
SAM.gov

JCM

THANK YOU.

JASON DIRNER
MOSA Chief Engineer
MOSA Management Office (MMO)
C5ISR Center Engineering and Systems Integration (ESI) Directorate
U.S. Army Combat Capabilities Development Command (DEVCOM)
FCDD-ISE-FD

Mobile: 443-987-2730 jason.m.dirner.civ@army.mil


Outline

CMOSS, SOSA™, and HOST Update by Jason Dirner of U.S. Army C5ISR Center

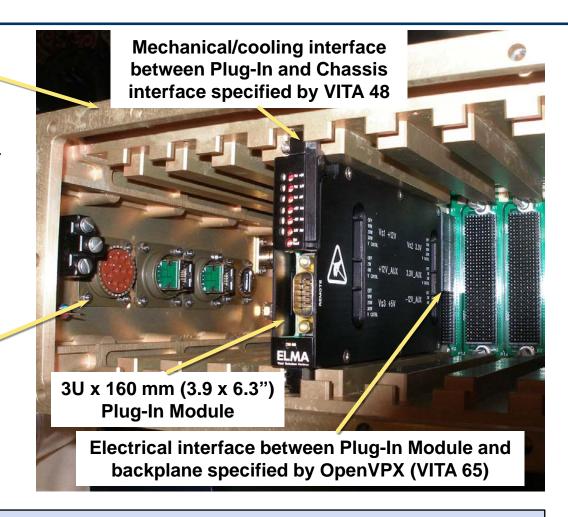
OpenVPX and associated standards

- Slot, Backplane and Module Profiles
- VITA standards defining mechanical interface of optical/coax
- Relationship of OpenVPX with other standardization efforts
- OpenVPX plans and trends
 - Connecter Modules in ANSI/VITA 65.1-2017, 2019, 2021, and 2023
 - Slot and Backplane Profiles added with 65.0-2019 and 2021 (none added with 2023)
 - Protocol sections added with ANSI/VITA 65.0-2019, 2021, and 2023
- Summary

Some of these slides were taken from the OpenVPX Tutorial. The full Tutorial as well as some others is available at: http://www.vita.com/Tutorials

OpenVPX and Associated Standards

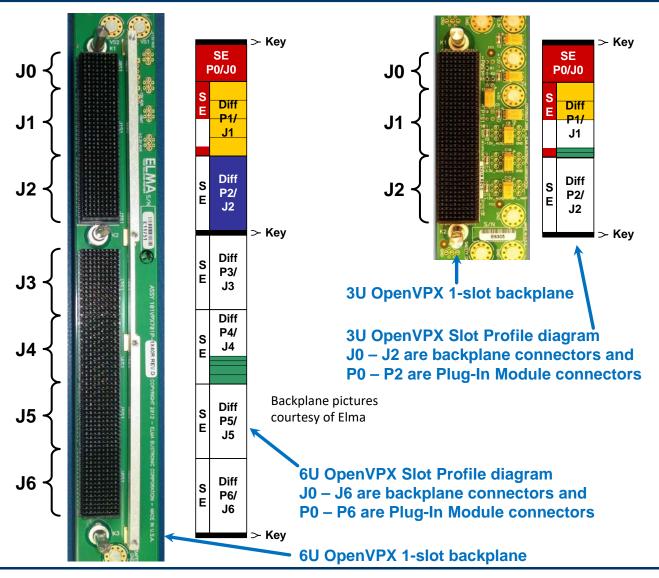
Conduction


cooled

chassis

Channels for cooling air

Chassis front panel


Pictures courtesy of Elma

• These standards define interfaces between Plug-In Modules and chassis for products intended to be deployed in harsh environments

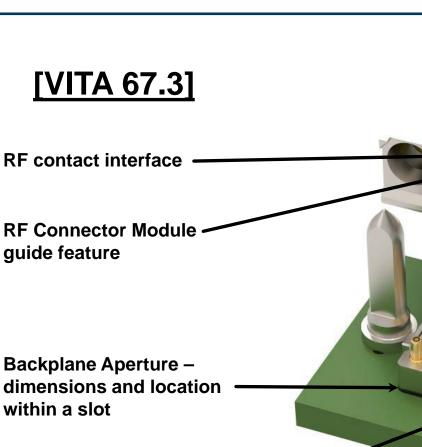
OpenVPX Profiles

Slot Profiles specify

- Pins associated with a backplane slot
- Pins associated with a Plug-In Module's backplane connector
- Pins assigned to particular ports
- Example Slot Profile name: SLT6-PAY-4F1Q2U2T-10.2.1

Backplane Profiles specify

- Which Slot Profiles a particular backplane has
- How its Slot Profiles are interconnected
- Example Backplane Profile name: BKP6-CEN16-11.2.2-n

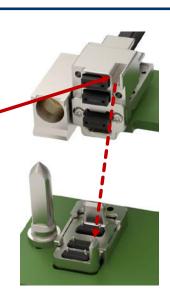

Slot and Backplane Profiles are protocol agnostic

Module Profiles specify

- The protocols to be mapped to the ports defined by the Slot Profile (e.g. 10GBASE-KR Ethernet)
- Example of <u>Module Profile name using classic naming</u>: MOD3p-PAY-1F1U1S1S1U1U2F1H-16.6.11-13
- Example of <u>Module Profile name using AMPS</u>
 (Alternative Module Profile Scheme) an AMPS String: MODA3p-16.6.11-1-4-F2C-(E8-E7)(P3F-A2F)(E7)(N-G5)

VITA Standards Defining Mechanical Interface of Optical/Coax Connector Modules

[VITA 66.5]


Secondary guide features fo Optical and Hybrid Connector Modules

MT ferrule interface

Primary guide features (tab/slot) for Optical and Hybrid Connector Modules

[VITA 65.1]

X-Y locations for RF contacts, MT ferrules, and guide features within a backplane Connector Module

Backplane Connector Module

dimensions (RF, optical and hybrid)

VITA Standards Defining Mechanical Interface of Optical/Coax Connector Modules – More Detailed

RF Connector Module guide feature dimensions

Backplane aperture – dimensions and location with a slot

RF contact interface

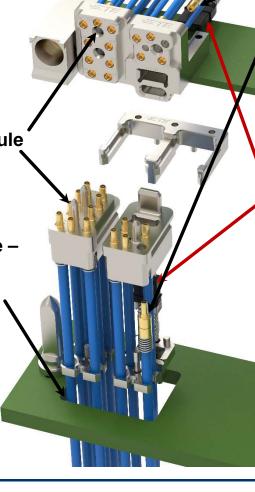
Primary guide features (tab/slot) for Optical and Hybrid Connector Modules

[VITA 66.5]

MT ferrule interface

[VITA 65.1]

X-Y locations for RF contacts, MT ferrules, and guide features within a backplane Connector Module


[VITA 66.5]

Secondary guide features for Optical and Hybrid Connector Modules

[VITA 67.3]

Backplane Connector Module dimensions (RF, optical and hybrid)

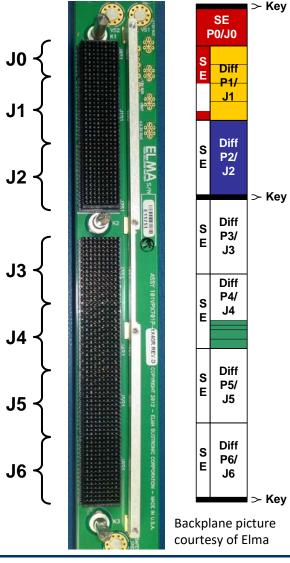
- [VITA 65.0] Slot Profiles specify Apertures and [VITA 65.1] Slot Profile dash options specify what goes in the Apertures
 - Apertures are holes on backplane slots and on Plug-In Modules for coax/optical Connector Modules

Outline

CMOSS, SOSA™, and HOST Update by Jason Dirner of U.S. Army C5ISR Center

OpenVPX and associated standards

- Slot, Backplane and Module Profiles
- VITA standards defining mechanical interface of optical/coax


Relationship of OpenVPX with other standardization efforts

OpenVPX plans and trends

- Connecter Modules in ANSI/VITA 65.1-2017, 2019, 2021, and 2023
- Slot and Backplane Profiles added with 65.0-2019 and 2021 (none added with 2023)
- Protocol sections added with ANSI/VITA 65.0-2019, 2021, and 2023

Summary

Some of these slides were taken from the OpenVPX Tutorial. The full Tutorial as well as some others is available at: http://www.vita.com/Tutorials

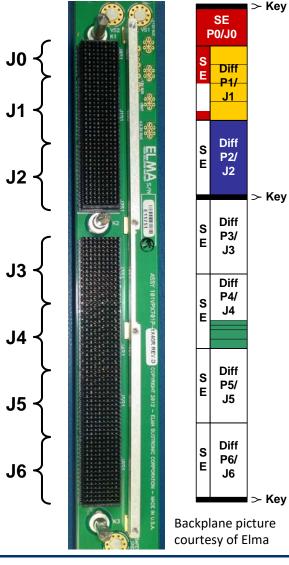
Relationship of OpenVPX to Other Standardization Efforts

- For what goes into OpenVPX, continuing to get input from:
 - VITA Member companies
 - SOSA (Sensor Open Systems Architecture) Hardware Working Group (https://www.opengroup.org/sosa)
 - HOST (Hardware Open Systems Technologies) community of both those working on it and those using it (https://host-oa.com/)
 - Army C5ISR Center's CMOSS (C4ISR/EW Modular Open Suite of Standards) Community thru their influence of SOSA
- Also taking input from VITA 65 Working Group back to SOSA
 - Several of us participate in both VITA and SOSA
- In SOSA we have discussions, which are ITAR controlled, to come up with best solutions in relation to target applications
 - The VITA Standards Organization (https://www.vita.com/) is international, so we cannot have discussions involving ITAR controlled and other sensitive information
- Working to align SOSA, HOST, CMOSS and OpenVPX
 - In terms of Slot and Module Profiles, expect SOSA, HOST, and CMOSS to continue to point at a subset of OpenVPX

Outline

CMOSS, SOSA™, and HOST Update by Jason Dirner of U.S. Army C5ISR Center

OpenVPX and associated standards


- Slot, Backplane and Module Profiles
- VITA standards defining mechanical interface of optical/coax
- Relationship of OpenVPX with other standardization efforts

OpenVPX plans and trends

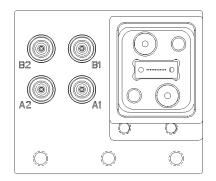
- Connecter Modules in ANSI/VITA 65.1-2017, 2019, 2021, and 2023
- Slot and Backplane Profiles added with 65.0-2019 and 2021 (none added with 2023)
- Protocol sections added with ANSI/VITA 65.0-2019, 2021, and 2023

Summary

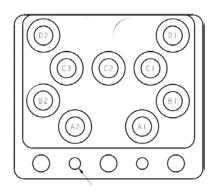
Some of these slides were taken from the OpenVPX Tutorial. The full Tutorial as well as some others is available at: http://www.vita.com/Tutorials

OpenVPX Plans and Trends – Published Standards

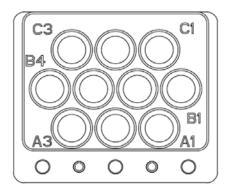
- Latest versions of OpenVPX™ Published June of 2023
 - ANSI/VITA 65.0-2023, OpenVPX™ System Standard; June 2023
 - ANSI/VITA 65.1-2023, OpenVPX™ System Standard Profile Tables; May 2023
- ANSI/VITA 65.0-2023 and ANSI/VITA 65.1-2023 added:
 - 2 Connector Modules to VITA 65.1, in addition to the 26 that are in ANSI/VITA 65.1-2021
 - Ethernet, General Purpose Electrical, Analog Video, and Digital Video protocol sections
 - No Slot or Backplane Profiles added with ANSI/VITA 65.0-2023, compared to:
 - 5 new 6U and 6 new 3U Slot Profiles added with ANSI/VITA 65.0-2019
 - 1 new 6U and no new 3U Slot Profiles along with 2 new Backplane Profiles added with ANSI/VITA 65.0-2021
 - Support for video:
 - The 2 Connector Module added to ANSI/VITA 65.1-2023 have 75 ohm contacts
 - Added some Slot Profile dash options using the Connector Modules with 75 ohm contacts
 - Added several video protocol sections



OpenVPX Plans and Trends – Work In Progress


- Working on next versions of VITA 65.0 & 65.1, expect out late 2024 or sometime in 2025, expected to add:
 - Protocol sections Additional of DisplayPort 1.4
 - No new Slot or Backplane Profiles other than Slot Profile dash options
 - Slot Profiles dash options (are in VITA 65.1) specify what Connector Modules go in apertures for optical/coax
 - Slot Profile dash options also specify Optical Profiles how pipes for protocols are mapped to MTs
 - Regardless of the Slot Profile dash option, the aperture (hole) in the backplane stays the same
 - Optical Profiles to support Single-Mode optical-fiber
 - Slot Profile dash options that use these Optical Profiles
- Working out what next generation VPX connectors are and how to standardize them

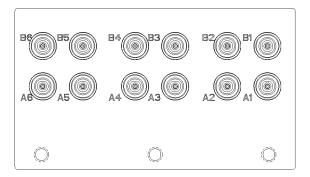
Connector Modules In ANSI/VITA 65.1-2017



Hybrid_66.4+67.1-6.4.5.6.1

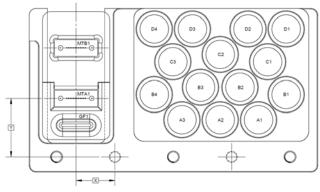


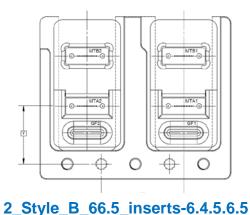
9_SMPM_contacts-6.4.5.6.2

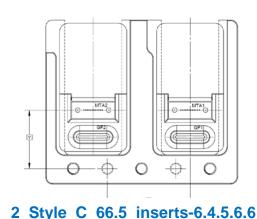

- ANSI/VITA 65-2010 (R2012) has only two Slot Profiles with optical/coax
 - These Slot Profiles have ANSI/VITA 67.1 Connector Modules 4 RF contacts
 - No optical
- ANSI/VITA 65.1-2017 was the initial version of 65.1
 - ANSI/VITA 65-2010 and 65-2010 (R2012) have tables of Module and Backplane Profile dash options included – these moved to VITA 65.1
 - ANSI/VITA 65-2010 and 65-2010 (R2012) do not have Slot Profile dash options – added with VITA 65.1
 - OpenVPX Connector Module definitions are in VITA 65.1

10_SMPM_contacts-6.4.5.6.3


66.4 in 67.3D-6.4.5.7.1


3 of 67.1 in 67.3E-6.4.5.8.1

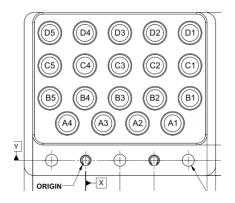

Connector Modules Added by ANSI/VITA 65.1-2019

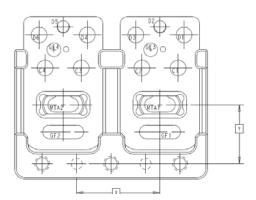

- With what is expected to be 2023 version of 65.1 all Connector Modules using ANSI/VITA 66.5-2022 Style B are not recommended for new designs
 - Style B has been superseded by Style D
 - Style B is included in ANSI/VITA 66.5-2022 to document existing designs
 - ANSI/VITA 65.1-2019 and 65.1-2021 do not include Recommendation to not use Style B in new designs

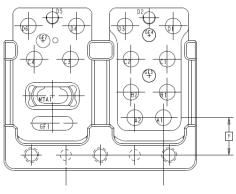


1_Style_B_66.5_insert_and_14_SMPM_contact-6.4.5.8.2 (not recommended for new designs)

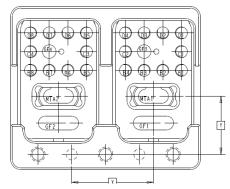
(not recommended for new designs)



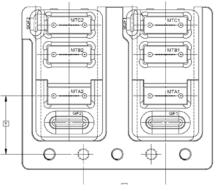

1_Style_C_66.5_insert_and_ 14_SMPM_contact-6.4.5.8.3


Connector Modules Added by ANSI/VITA 65.1-2021 (1 of 3)

19_SMPS_contacts-6.4.5.6.7

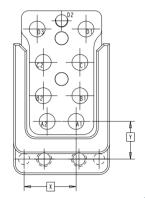


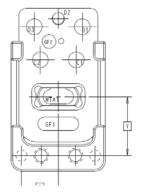
2_Style_C_inserts_and_ 10_NanoRF_contacts-6.4.5.6.8

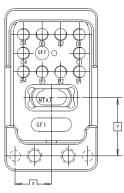


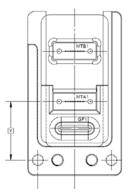
1_Style_C_insert_and_ 14_NanoRF_contacts-6.4.5.6.9

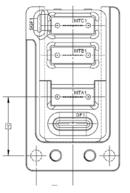
- Addition of Connector Modules peaked with ANSI/VITA 65.1-2021
 - 5 are in ANSI/VITA 65.1-2017
 - 5 added with ANSI/VITA 65.1-2019
 - 16 added with ANSI/VITA 65.1-2021
 - 2 added with ANSI/VITA 65.1-2023


2_Style_C_inserts_and_ 20 NanoRF_contacts-6.4.5.6.10

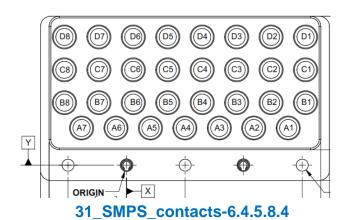

2_Style_D_inserts-6.4.5.6.11

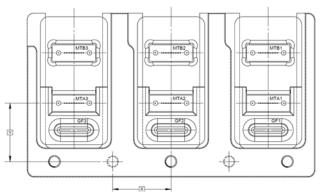

Connector Modules Added by ANSI/VITA 65.1-2021 (2 of 3)



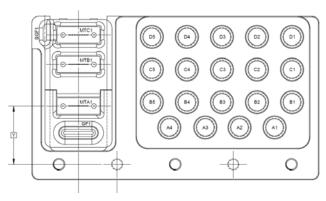

1_Style_C_insert_and_ 5_NanoRF_contacts-6.4.5.7.3

1_Style_C_insert_and_ 10_NanoRF_contacts-6.4.5.7.4

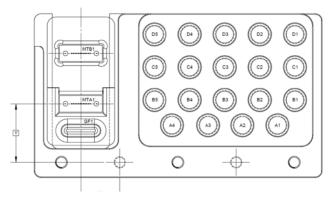

1_Style_B_insert-6.4.5.7.5 (not recommended for new designs)

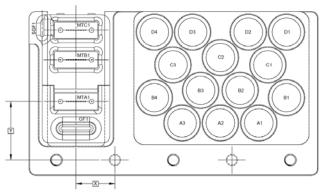


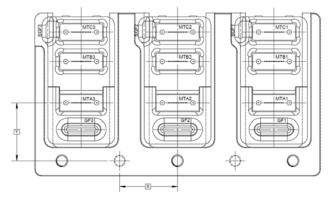
1_Style_D_insert-6.4.5.7.6



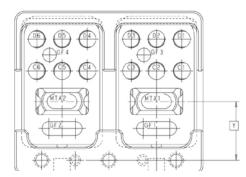
Connector Modules Added by ANSI/VITA 65.1-2021 (3 of 3)

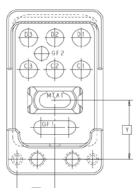



3_Style_B_inserts-6.4.5.8.6 (not recommended for new designs)


1_Style_D_insert_and_ 19_SMPS_contacts-6.4.5.8.8

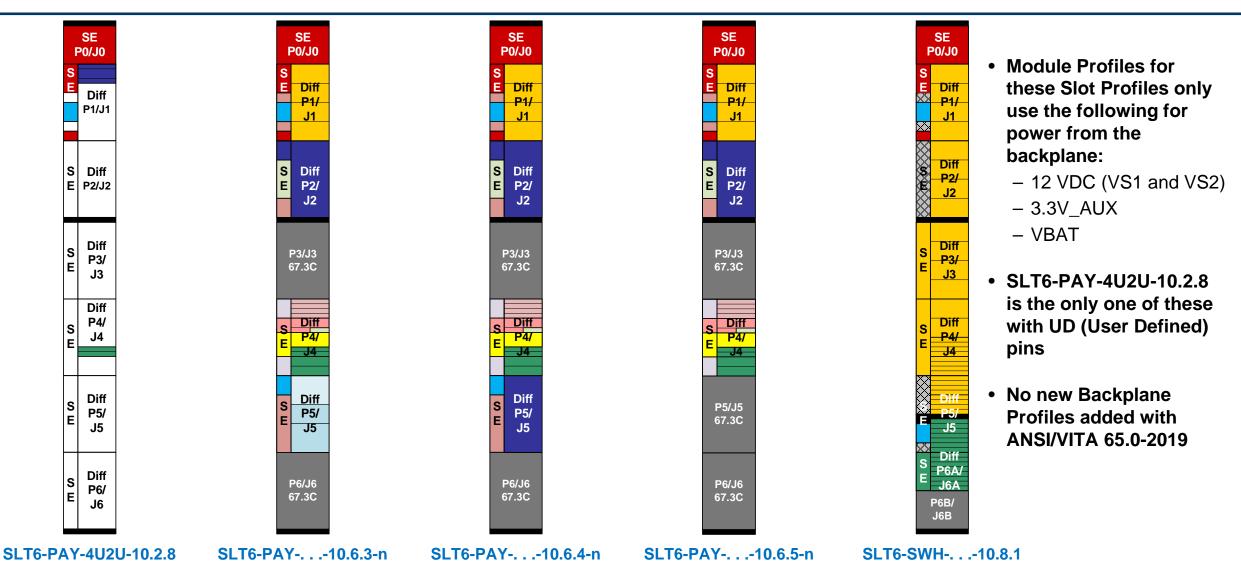
1_Style_B_insert_and_19_SMPS_contacts-6.4.5.8.5 (not recommended for new designs)


1_Style_D_insert_and_ 14_SMPM_contacts-6.4.5.8.7


3_Style_D_inserts-6.4.5.8.9

Connector Modules Added by ANSI/VITA 65.1-2023

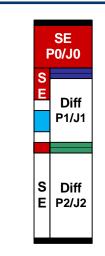
2_Style_C_inserts_and_ 12_75-OhmNanoRF contacts-6.4.5.6.12



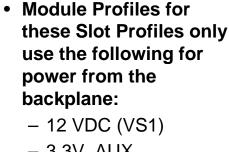
1_Style_C_insert_and_ 6 75-OhmNanoRF contacts-6.4.5.7.7

- Adds Connector Modules with 75 ohm contacts
 - Intended to be used with video protocols
- Addition of Connector Modules peaked with ANSI/VITA 65.1-2021
 - 5 are in ANSI/VITA 65.1-2017
 - 5 added with ANSI/VITA 65.1-2019
 - 16 added with ANSI/VITA 65.1-2021
 - 2 added with ANSI/VITA 65.1-2023

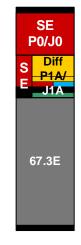
6U Slot Profiles Added by ANSI/VITA 65.0-2019

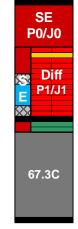


3U Slot Profiles Added by ANSI/VITA 65.0-2019

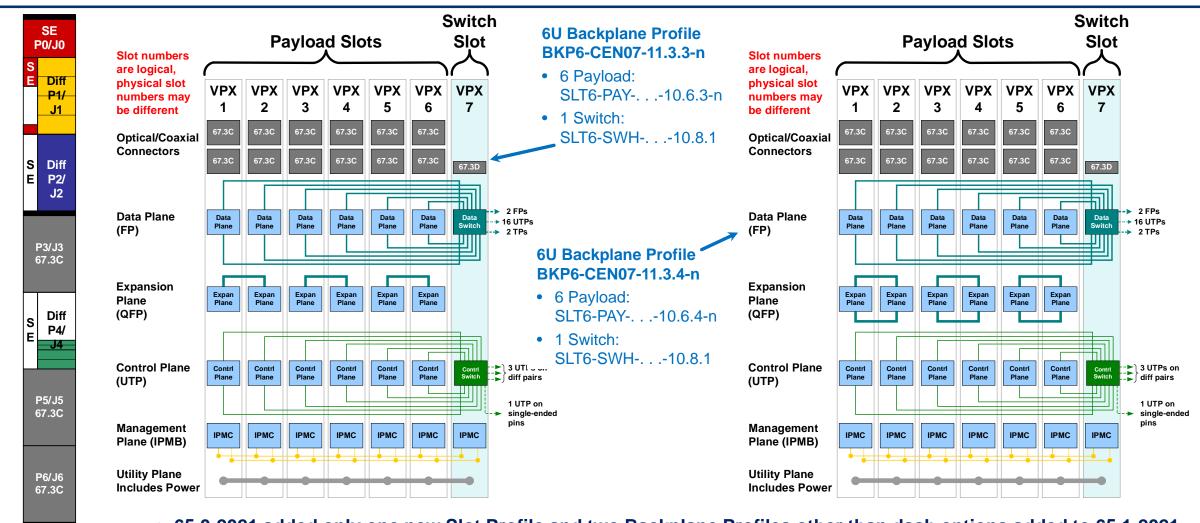

SLT3-PAY-...-14.2.16

SLT3-PAY-2U2U-14.2.17


SLT3-SWH-6F8U-14.4.15


- 3.3V_AUX
- VBAT
- SLT3-PAY-2U2U-14.2.17 is the only one of these with UD (User Defined) pins

SLT3-PAY-...-14.6.13


SLT3-PAY-...-14.6.14

SLT3-PAY-...-14.9.2

Slot and Backplane Profiles Added with ANSI/VITA 65.0-2021

SLT6-PAY-. . .-10.6.6

65.0-2021 added only one new Slot Profile and two Backplane Profiles other than dash options added to 65.1-2021

• 65.0-2023 did not add any Slot or Backplane Profiles other than Slot Profile dash options added to 65.1-2023

Protocol Sections Added With ANSI/VITA 65.0-2019 (1 of 2)

Ethernet sections added

- 5.1.14 100BASE-TX (0.125 Gbaud Signaling)
- 5.1.15 25GBASE-KR (25.78125 Gbaud Signaling)
- 5.1.16 25GBASE-KR-S (25.78125 Gbaud Signaling)
- 5.1.17 25GBASE-SR (25.78125 Gbaud Signaling Over Multimode Optical Fiber)
- 5.1.18 100GBASE-KR4 (25.78125 Gbaud Signaling)
- 5.1.19 100GBASE-SR4 (25.78125 Gbaud Signaling Over Multimode Optical Fiber)

InfiniBand section added

5.4.6 InfiniBand EDR (25.78125 Gbaud Signaling)

Protocol Sections Added With ANSI/VITA 65.0-2019 (2 of 2)

• 5.9 USB (Universal Serial Bus)

- 5.9.1 High-Speed USB 2 (0.480 Gbaud Signaling)
- 5.9.2 SuperSpeed USB 3 Gen 1 (5 Gbaud Signaling)
- 5.9.3 SuperSpeed USB 3 Gen 2 (10 Gbaud Signaling)

5.13 General purpose serial ports

- 5.13.1 Asynchronous Serial Ports [TIA-422] and [TIA-232] (at least up to 115,200 baud)
- 5.13.2 Asynchronous Serial Ports with LVCMOS Levels (at least up to 115,200 baud)

5.14 Signals Over Coax

- 5.14.1 Digital Over coax Analog Levels
- 5.14.2 Digital Over coax CMOS/TTL levels
- **5.14.3** GPS Antenna Input

5.15 General purpose electrical

- 5.15.1 GPIO Single-Ended General Purpose I/O
- 5.15.2 GPLVDS Differential General Purpose I/O

Protocol Sections Added With ANSI/VITA 65.0-2021

Ethernet sections added

- 5.1.20 50GBASE-KR2 (25.78125 Gbaud Signaling)
- 5.1.21 50GBASE-SR2 (25.78125 Gbaud Signaling Over Multi-Mode Optical Fiber)

Aurora sections added

- **5.7.3** Aurora with 64B/66B Encoding (up to 10.3125 Gbaud Signaling)
- 5.7.4 Aurora with 64B/66B Encoding (up to 25.78125 Gbaud Signaling)
- 5.7.5 Aurora with 64B/66B Encoding (up to 10.3125 Gbaud Signaling Over Multi-Mode Optical Fiber)
- 5.7.6 Aurora with 64B/66B Encoding (up to 25.78125 Gbaud Signaling Over Multi-Mode Optical Fiber)

General purpose serial port sections added

- 5.13.3 Asynchronous Serial Ports [TIA-232]
- 5.13.4 Asynchronous Serial Ports [TIA-422]
- 5.13.5 Asynchronous Serial Ports [TIA-485]

General purpose electrical sections added

- **5.15.3** [TIA-485] Higher-voltage, Differential, Bi-Directional General Purpose I/O
- **5.15.4** [TIA-422] Higher-voltage, lower-speed Differential General Purpose I/O
- 5.15.5 CLK Electrical requirements of radial clocks

Non-Video Protocol Sections Added With ANSI/VITA 65.0-2023

Ethernet sections added

- 5.1.22 50GBASE-KR (26.5625 Gbaud, PAM4 Signaling)
- 5.1.23 100GBASE-KR2 (26.5625 Gbaud, PAM4 Signaling)
- 5.1.24 200GBASE-KR4 (26.5625 Gbaud, PAM4 Signaling)
- 5.1.25 400GBASE-KR8 (26.5625 Gbaud, PAM4 Signaling)

5.16 Serial Front Panel Data Port (sFPDP)

- **5.16.1** sFPDP with 8B/10B Encoding (up to 10.3125 Gbaud Signaling)
- 5.16.2 sFPDP with 8B/10B Encoding (up to 10.3125 Gbaud Signaling Over Multi-Mode Optical Fiber)
- 5.16.3 sFPDP with 64B/67B Encoding (up to 10.3125 Gbaud Signaling)
- 5.16.4 sFPDP with 64B/67B Encoding (up to 25.78125 Gbaud Signaling)
- 5.16.5 sFPDP with 64B/67B Encoding (up to 10.3125 Gbaud Signaling Over Multi-Mode Optical Fiber)
- 5.16.6 sFPDP with 64B/67B Encoding (up to 25.78125 Gbaud Signaling Over Multi-Mode Optical Fiber)

General purpose electrical sections added

- 5.15.6 LVGPIO Single-Ended General Purpose I/O
- 5.15.7 GPLVDS15 Differential General Purpose I/O Using 1.5V Logic

Video Protocol Sections Added With ANSI/VITA 65.0-2023

5.17 Composite Video Baseband Signal (CVBS)

5.17.1 National Television System Committee (NTSC)

5.18 Analog Video for Aircraft System

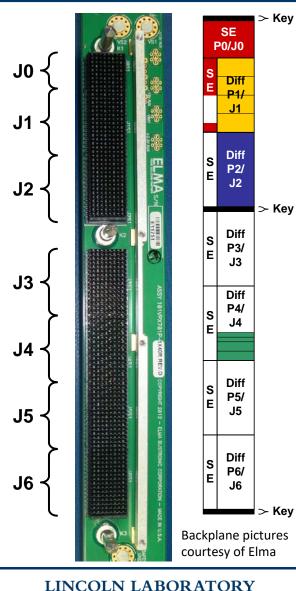
- 5.18.1 STANAG 3350 Class A 875 lines, 60 Hz field frequency
- 5.18.2 STANAG 3350 Class B 625 lines, 50 Hz field frequency
- 5.18.2 STANAG 3350 Class C 525 lines, 60 Hz field frequency

5.19 Video Signal/Data Serial Interface (SDI)

- **5.19.1** High-Definition Serial Digital Interface (HD-SDI) . . . **5.19.4** 12 Gbit/s Serial Data Interface (12G-SDI)

5.20 CoaXPress

5.20.1 CoaXPress CXP-1 – 1.250 Gbits/s
 5.20.7 CoaXPress CXP-12 – 12.500 Gbits/s


5.21 Avionics Digital Video Bus (ADVB)

- 5.21.1 ADVB At a Bit Rate of 1.0625 Gbit/s with 8B/10B encoding
- . . .
- 5.21.16 ADVB with 256B/257B encoding with 28.0500 Gbaud signaling

Summary

- VITA, SOSA, HOST, and CMOSS communities giving input for revisions of OpenVPX standards
- ANSI/VITA 65.0-2023 and 65.1-2023 were published June 2023
 - Added 2 Connector Modules with 75 ohm contacts to support video
 - Added more protocol sections including sections for both analog and digital video
 - No new Slot or Backplane Profiles other than additional dash options
- With version of VITA 65.0 & 65.1, expected out early late 2024 or sometime 2025
 - Optical Profiles to support Single-Mode optical fiber
 - Slot Profile dash options using these Optical Profiles
- Starting with ANSI/VITA 65.1-2023 activity to add optical/coax Connector Modules has decreased
- Since 2019 only 1 new Slot Profile and 2 new Backplane Profiles added in 2021
 - With ANSI/VITA 65.0-2023 and ANSI/VITA 65.1-2023, no new Slot or Backplane Profiles added, other than Slot Profile dash options

